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Decay of Correlations in Surface Models 
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A convergent low-temperature expansion for a variety of models of two- 
dimensional surfaces is presented. It yields existence of the thermodynamic limit 
for the pressure and correlation functions as well as analyticity in z = e -B. In 
addition, the estimates give exponential decay of truncated correlations, which 
proves the existence of a gap in the spectrum of the transfer matrix below the 
ground state eigenvalue. Two particular examples included in the general 
framework are the s01id-on-solid and discrete Gaussian models. 

KEY WORDS: Surface models; decay of correlations; interfaces; alge- 
braic formalism. 

1. I N T R O D U C T I O N  

Below we present  an  expans ion  for a class of models  often used to s tudy 
interfaces or  crysta l  surfaces. This  expans ion  is shown to converge at  low 
tempera tu res  and  is used to s tudy f luctuat ions  out  of the ground  state of 

these models .  
The  models  themselves  are  of  the fol lowing sort. To  each site in a 

two-d imens iona l  square la t t ice we assign an  integer which specifies the 
height  of  the interface at  that  site. The  na tu ra l  b o u n d a r y  condi t ions  in this 
case consist  of sett ing the heights ident ica l ly  equal  to zero outs ide some 
finite volume.  The  energy of the in terface  is given by  the H a m i l t o n i a n  
funct ion  (9) : 

= E h/) 
(i4> 

The  sum runs over  neares t  ne ighbor  sites, h i ~ Z is the height  of the 
in terface  at a given site, i, and  g( l"  J) is a suff iciently rapid ly  increasing 
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function. Specifically we assume 

gO) = ~ (1) 

~. e-/3g (') < e -[3c, f i > 0 ,  C---> l as fl-+ oo 
n = l  

The low-temperature expansion is a generalized Peierls expansion. 
Since the energy of a height configuration depends only on the contours 
across which h changes its value, it is possible to use the algebraic 
framework which was originally discussed in Refs. 5 and 6 in the context of 
statistical mechanics and has recently been successfully applied to quantum 
field theory, (t's) to derive cluster expansions for the pressure and correla- 
tion functions. Convergence of the expansion is proven using standard 
techniques and since the estimates are uniform in ILA[[ (the area of A) the 
existence of the thermodynamic limit follows. Our results are summarized 
in the following theorems (z = e -~, /3 = 1/kT) .  

Theorem 1. There is some neighborhood, U, of the origin of the 
complex z plane and some constant c, independent of A and the choice of z 
within U such that 

IZAI • e clLAII 

Furthermore the pressure 

p(z) = 

exists and is analytic in z in U. 

lim 1 IIAIl~o~ ~ logZ• (2) 

The second theorem deals with expectation values of functions f~ on 
�9 the set of height configurations with support rr C A satisfying the following 

conditions: 

f~({h))  = I-I f (h,)  
i ~  (3)  

Ifdhe)l  < Ih,[", a E 

Theorem 2. There exists a neighborhood, U, of z = 0 such that for 
any function f~ satisfying (3) 

illlm ( f~ ( (h ) ) )A  < o c  

and is analytic as a function of z. 

Assuming A,~, and B~2 satisfy (3), then with d = dist(~r l, ~r 2) there exist 
constants 0 < C I, C 2 < oe such that 

(A~rB~r2)- (A~r,)(B=2)t < C,e -C2d 
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In particular Theorem 2 establishes the existence of a gap (e -c~, 1) in 
the spectrum of the transfer matrix (see Ref. 7) between the eigenvalue 1 
corresponding to the ground state energy and the rest of the spectrum. We 
conclude the Introduction with several remarks: 

(1) Two special cases included in the set of Hamiltonians allowed by 
(1) are the solid-on-solid (SOS) and discrete Gaussian models. In the SOS 
model g(]hl)= ]hi. (8) The rigidity of the interface of this model at low 
temperatures is mentioned in Ref. 6. The discrete Gaussian model is 
defined by g(Ihl)= h 2. This model is of particular interest because it is 
related, via a duality transformation, to the two-dimensional lattice Cou- 
lomb gas. (3'9) 

(2) The systems our expansion is designed to handle are essentially 
two-dimensional spin systems in which the spin at any site may take on an 
infinite number of discrete values. 

(3) These methods could presumably also be used to study the phase 
separated state of the three-dimensional Ising model, thereby reproducing 
the results established in Refs. 2 and 4 using a direct approach. 

2. THE EXPANSION 

A. Definition of Admissible and Compatible Cluster Configurations 

The first step in our procedure is to set up a generalized Peierls 
expansion. 

Definitions. (1) A contour F is a closed connected (possibly branch- 
ing) set of dual lattice bonds. 

(2) The cluster X associated with F is a IFI + 1 tuple X =  (F,h l, 
h~ . . . . .  hlrl), h i E Z',{0} (IF[ = length of F). 

(3) A cluster configuration is an unordered collection {X l . . . . .  Xk) 
of clusters. 

In order to be able to rewrite Z in terms of a sum over cluster 
configurations we must first specify a way of associating a cluster configu- 
ration to a given height configuration. This will establish a bijective 
correspondence between the set of height configurations and a subset of all 
cluster configurations, the so-called admissible and compatible ones. 

Given a simply connected region A with zero boundary conditions and 
a specified height configuration, the associated contours are defined to be 
the maximally connected components of the set of dual lattice bonds across 
which the height changes. Two different contours will thus be disjoint. 

Definition. A set of clusters {Xl . . . . .  Xk) is compatible if for all 
pairs (Xj, Xj) the associated contours satisfy F i r Fj = O. 
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Fig. 1. Example of a cluster configuration for a given height configuration. 

In order to define the clusters associated with the height configuration 
which gives contour F, it is convenient to first specify an ordering of the 
dual bonds: b I < b 2 if xb, < xb2 or if Xbl = Xb2 and Ybl <Yb2 where (x b, Yb) 
are the coordinates of the midpoint of b. It is also necessary to specify a 
direction in which to measure the height differences: Given a bond b 
separating two connected components of IntF (R~ and R2) with n I (n2) 
being the minimal number of links of F crossed by a line from R I (R2) to 
A\IntF,  then the direction is from the region of smaller n to that of larger 
n. If n 1 ---n 2 then the direction can be taken in direction of increasing 
order. This procedure is illustrated in Fig. 1. Finally the cluster associated 
with F can be defined to be 

X = ( F ,  hbt, hb2 . . . .  , hbl~l ), b 1 < b 2 < �9 �9 " < bit I 

(There is one height jump hb, associated with any bond b i of I'.) 
Clearly the heights hb~ arising from any height configuration must 

satisfy certain conditions. The jumps must be such that they add up to the 
same number for any line connecting 8A to a given point p E Inl, F. 

Definition: A cluster configuration is said to be admissible if for any 
cluster F in the configuration and for any point p ~ Int F 

fa PAAh ds is path independent 

fc Ah.  ds is the line integral defined by adding up all heights jumps 
along e taking account of the above direction convention. 

Corollary 1. There is a bijective correspondence between height 
configurations and admissible and compatible cluster configurations. 
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Corollary 2. 
k 

z A = E I I  p( x, ) 
( X i  . . . . .  Xk} s = 1 

compatible 
admissible 

F i cA  

o(X,)  = exp - fl 2 g(thbj[) 
j = l  

(4) 

B. Algebraic Expansion for the Pressure 

The basic idea underlying the algebraic method is to replace the 
summation over compatible cluster configurations in (4) by an unrestricted 
sum. (We shall assume from this point on that all clusters appearing are 
admissible unless it is explicitly stated otherwise.) This is accomplished by 
explicitly introducing the compatibility conditions as factors [ 1 + A (X+, Xj)] 
(we are using the notation of Refs. 1 and 8). Expanding the product of 
these factors in powers of A gives a set of terms each of which can be 
interpreted as a graph connecting certain of the vertices X 1 . . . . .  X k. The 
resulting cluster-graph expansion is a convenient starting point for conver- 
gence estimates since all clusters in a nonzero term must be connected 
(overlapping), enabling one to easily control the number of terms contain- 
ing a given point p by the energy decay associated with the length of the 
contours. 

The first step explicitly incorporates the compatibility conditions into 
the algebra. 

o, r, n r j = o  A(X,,X+) =- (S) 
- 1, otherwise 

The factor 1 + A (X i, Xj) eliminates all configurations for which X i and X/ 
are incompatible. Thus 

k 

z ,= E II  l1 + A(x,,,X,2) ]II o(x,) 
{X~ . . . .  , X k }  s l < s 2  s = l  

X i c A  

Expanding the product of factors I + A ( X s , , X , ) ,  and regarding 
(X 1 . . . . .  Ark) as a set of vertices and A(X,,,X~.2) as a link connecting Xs~ 
and Xsz, any term in the resulting sum is given by a graph F with at most 
one link l between any pair of vertices. 
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Let G ( X  l . . . . .  Xk) denote the set of all such graphs. Then 

k 

zA= E IIp(x,) 2 IIA(I), x, cA 
(X~ . . . . .  Xk} s = I F e  G(X~ . . . . .  Xk) l ~ F  

k 
1 = ~ ~ ~, H p(X~) ~, I-I A(l) (6) 

k = 0  (X  l . . . . .  Xk) s =  1 F E G ( X I  . . . . .  Xk) t ~ F  

(X  l . . . . .  Xk) denotes an ordered configuration of clusters. 
In order to derive an expansion for the pressure, it is convenient to 

write Z A as the exponential of what will turn out to be a sum over 
connected cluster-graph configurations (where connectivity this time refers 
to the graph). To accomplish this, we split every term in Z A into the 
product of the contributions from each connected component (a single 
vertex is a possible connected component). Then we resum the series by 
summing first over the number n of connected components and then over 
the possible cluster-graph configurations in each component. The manipu- 
lations with infinite series are justified since the final series converge 
a b s o l u t e l y .  G c ( X  1 . . . . .  X k )  is the set of all connected graphs of the set of 
vertices X~ . . . . .  X k. V~ will denote the set of vertices of the ith connected 
component F~ of F. So 

E E o(xj) 
k = 0  (X  1 . . . . .  Xk) F@G(XI . . . . .  Xk) i = l  IEF' i 

n=O ~"  ~ E k ! /  k i !  
k=O kj . . . . .  kn= 1 

Y, Tk~=k �9 
k, 

E I I  A ( l ) I I p ( x / )  
1 i =  1 ( X i  . . . . .  X~,) r e  o~(Xi  . . . . .  x~,) l ~ r  

= 1 1 2 y, II A(t) II p(x; 
,=0 ~.t i=lDk'=l ~ (xr . . . . . .  "%)r~ac(x~ . . . . .  xz,) t~r  j j = l  

= exp ~ ~] ~ H A ( l )  (7) 
k =  1 (Xl, �9 . . ,  Xk) F E G ~ ( X t  . . . . .  Xk) 1 E F  

The combinatorial factor k ! / H T k i !  gives the number of ways of 
distributing k distinguishable objects into n piles with k i elements in the ith 
pile. 

Finally to obtain an expression for the pressure defined in (2), one 
remarks that all terms in log Z A arise as translates of configurations 
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containing the origin. There are [JAIl possible translates. Any term, t, in 
log Z A arises in I lU~,=,x~ll different ways as a translate. ( X 1 , . . . ,  X~ are 
the clusters of t.) Therefore up to boundary effects p ( f i )  will be given by 
the exponent of (7) restricted to terms containing the origin and divided by 

IIU~=,&II. 
temma 1. p( f i )  is given by the following cluster-graph expansion: 

51 p(/~) = ~ . ,  E E II A(Z) o(X,) 1 x, 
k = l  ( X t , . . . , X k )  F c G ~ ( X ,  . . . . .  Xk)  l ~ F  

oeu~x,  
(s) 

Proof. Denote the right-hand side of (8) by ft. Define S(A) by 

logZ A ~- [[Atl/~ - S(A) 

By the preceding remark all terms in log Z A appear in I[Atl/~. Conversely, 
the only terms in IIAII/~ which do not occur in logZ A and thus form S(A) 
are translates of terms t in/~ which cross OA. Since a cluster configuration 
crossing 0A can arise in [[A N UsX~lf ways as a translate of a term infi, it 
follows that 

1 II A n U , X ,  ll 
S(A) = 2 ~., 2 IlUsXA 

k =  1 ( X b  . - �9  Xk)  
aAnU,Xs~o 

k 

• • [rlA(l)] IIp(Xj) (9) 
F ~ G r  L ~ F  j j  = l  1 

By the convergence estimates of Section 3, 

IS(A)[ < constlaA[ 

Hence 

lim 1 =/~ ( [ 8 A [ ]  =f i  IIA[I -~r ~ log Z A -- IIAII -~~176 0 \ ] ~  �9 

C. Algebraic Expansion for the Expectation Values 

In this section the algebraic methods are used to give a cluster-graph 
expansion for normalized expectation values of functions f~ satisfying the 
conditions (3). The new feature is that in order to isolate the contribution of 
f ,  it is convenient to introduce two sets of clusters. 
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Definition. An X cluster (Y cluster) is a cluster with IntX O ~r ~# 0 
(Int Y N ~r = 0). 

For any cluster configuration f~ will depend only on the X clusters. 
There are new compatibility conditions for an admissible cluster configura- 
tion (X I , . . . , X r ; Y 1 , . . . ,  Yk), namely, I n tX inTrv  aO and IntYjN 
-- O. Define 

- 1  Int Yj N 7r :/: 0 
A(~r, Yj) = 0 IntYj N ~ = O  

Just as in the first step of part B all compatibility conditions on Y-type 
clusters are explicitly incorporated into the algebra by inserting factors 
[1 +A(Xi ,  Yj) 1, 0<~ i < r, 1 < j < k; [1 +A(Yi ,  Yj) ], 1 < i < j  < k (~ is 
treated as a new cluster Xo). Thus the unnormalized expectation value of f~ 
can be written in the form 

r k 

Za(f= ) a =  E f=({X, . . . . .  x r } ) I I p ( x , ) I I p ( Y j )  
( X l  . . . . .  Xr; Y1, " � 9  Yk} s =  1 j =  1 

compatible 

E L({Xl . . . . .  Xr}) p(X,)E 
s = l  k=O (x~ . . . . .  xr) 

compatible 
lnt XIN ~ '~0  

k 

• E I-Ip(Yj) 1-I [1 + A(Yj,,Yj2)] 
(YI . . . . .  Y,) 1 j l < j :  

• I I  [1 + A(Xi, Yj) ] 
O << i <.< r 
l < j < ~ k  

Expanding the final two products yields a sum of terms corresponding to 
all graphs in G(X o . . . . .  Xr; YI . . . . .  Yk), the set of graphs of vertices 
(X o . . . . .  Xr; Y1 . . . . .  Yk) containing no links between X vertices [since 
there are no A (Xi,, Xi2 ) factors] and with at most one link between any pair 
of vertices, i.e., 

r 1 

ZA(f= )A= ~ ]  f ~ ( ( X l , ' ' " X r ) ) s ~ _ l P ( X s )  ~ 
(x, . . . . .  xr} = k=O (Y, . . . . .  Yk) 
compatible 

Int XiN ~r =#0 

1 F ~ G ( X o  . . . . .  X,;  Yt . . . . .  Yk) l 
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Fig. 2. Splitting of a graph F E G(X p  X2, X3; Y~ . . . . .  Ys). 
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The final step consists of separating all graphs into the part F' directly 
or indirectly connected to X clusters and the rest, F ' .  An example is shown 
in Fig. 2. 

The resummation consists of summing separately over all F' and F " :  

f ~ ( { X , ,  . . . , X ,  } )  f l o ( x , )  
1 {& . . . . .  x~) 

compatible 
Int Xi f~ ~r ~f~ 

~o k' 

�9 ( Y {  . . . . .  y~ . )  1 

k" 

r ' e G ~ ( X o , . . . ,  ,; Y{ . . . . .  Y[:,) t ~ F  

k"=o (Yf . . . .  , r~;,) I F " E G ( Y { ' , . . . ,  Y~:,) l 

G c ( X  o . . . . .  X r ;  Y~ . . . . .  Y/~,) is the set of graphs in G ( X  o . . . .  , X r ;  

Y( . . . .  , Y{,) connecting each Y/ vertex (directly or indirectly) to an X 
vertex. The last line gives back Z i .  Thus: 

s 

{x~ . . . . .  x , )  1 
compatible 

Int XI fq Tr ~ 0  

k 

• E ~ I I [ o ( ~ ) ]  
k ~ O  . . . . .  Yk) l 

F~Gc(X0,...,Xr; Y~,..., Yk) l e t  
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3, CONVERGENCE ESTIMATES 

Brandenberger and Wayne 

A. Basle Convergence Lemma 

Convergence of the expansions for both pressure and correlation 
functions will follow from the following basic lemma on the objects (see 
Ref. 8): 

k 

f ~ ( X , , . . . ,  ~u Yl , ~  Yk)  ~ E l-I A ( I )  1-[ o(Y~) 
r~Gc(Xb.. . ,X,;  Yl . . . . .  Yk) I~F s = l  

which occur explicitly in (10) and implicitly in (8). 

Lemma 2. There exists a neighborhood U of z = 0 such that for all 
z E U  

IdP(X1 . . . . .  X~; Yl . . . . .  gk)] < k! [zl(k+U)/gexp IXil (11) 
( Yt . . . . .  Yk) 
E~=,ILI=N 

Proof .  The proof proceeds by induction in r + k and similarly to the 
basic convergence estimate in Ref. 6 is based on a Kirkwood-Salzburg-type 
equation which expresses ~(X 1, . . . ,  Xr; Y1 . . . . .  Yk) in terms of �9 func- 
tions of less than r + k vertices. 

Given F ~ Gr Define 
~2 = {s : I ( Z  l, Y,) E F}; index set of Y clusters connected directly or 

indirectly to Z l; 
F ' = { I  E F : I =  I (Zj ,  Y~) for j >  1 and s ~ f ~  or l =  I(Ys,  Ys,) for s ,s '  

E f~}; set of graph links connecting (Z 2 . . . . .  Zr) with clusters in 
f~ or connecting clusters in ~2 among themselves; 

r" = r\r'\fl(Z~, r g  : s ~ s2}. 
With this notation, 

d#(X 1 . . . . .  X~; Y1 . . . .  , Yk ) = E II ~,(L) II A ( X , ,  L) 
FEGc(XI . . . . .  Y,) s~2 s@• 

• IX A(I) ~ A(I) ]'] p(u (12) 
lEE' 1EF" sf5~ 

The Kirkwood-Salzburg equations follow by resumming (12): Fix ~2 
and sum over 

(i) all possible graphs among vertices (Ys)s~a connected to 
(Xj)j=2 . . . . . .  or (Ys)sEa, i.e., over the set Gc(X 2 . . . . .  Xr , (Y , ) s~a;  

(Ys),~); 
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(ii) all graphs connect ing (Ys)se~ among themselves and 
(Xj)j= 2 . . . . . .  [this set is denoted by G'(X2 . . . .  , Xr; ( Ys)se,)]" 

Then only sum over ~2. Using in addition 

E ~-~ A(1)= f i  U(X/,Y~) I-I u(Ys,,Y~,) 
r" �9 G ' ( X 2 , . . . ,  x , ;  ( Ys)s e ~) t e F" j = 2 s I < s2 

s ~  siEgt 

where U(Xj Y~) = 1 + A (Xj, Y~) 

Eq. (12) becomes the Kirkwood-Sahburg equation 

to 

cb(X, . . . .  , Xr; Y, . . . . .  Yk) 

= E  H o(L) H A(z,,L) [I U(Xj, Y~) H U(Y~,,Ys2) 
f~ s @ ~  s ~  j = 2  s t < s 2  

s E ~  s j ~  

X + ( X 2 , . . . ,  X,., (Ys),e~; ( Y ~ ) ~ )  (13) 

The left-hand side of (11) is estimated by inserting (13), resumming by 
first fixing the cardinality I~1 of ~ and the total length M < N of clusters in 
~2, and summing over all cluster configurations compatible with (lilt, M). 
Using I U(Xj, Ys)l < 1 and explicitly isolating the terms with M = 0 and 
M = N one obtains 

E [(I)(Xl . . . . .  Xr; Y l ' ' ' ' '  Yk )l 
(Y, , -  � 9  Yk) 

E~=dYA=N 

k - I  N - 1  

< k! E 1 E E H [IA(X, ,Y;)[ Io(r; ) t ]  
I~1=1 I ~21! M=lf~l (Y~ . . . . .  Ylhl) se~ 

EIHI=M 

1 x 
(k -I~1)! 

E t • l~(xz  . . . . .  x .  r, . . . . .  rt'~t; Y(  . . . . .  Y;'-i~t)t 
( r~' . . . . .  HtmO 
E$ Y;'I= N -  M 

k 

+ 2 I-[[IA(X,,Y,)IIP(Y,)I] 
(r~,..., Yk) 1 
El r~l = N 

+ E [r . . . . .  Xr; rl . . . . .  Yk)l 
( Y J , . . . ,  Yk) 

E l  Ysl = N 
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Using the induction hypothesis and Lemma 3 we obtain 

(Y1 . . . . .  Y,O 

Z~=I}Y~I=N 

k - I  1 2 [XillallzlXM/41zl(k-I~l+N-M)/4exp IX/[ eM 

+ Ix,l~lzl 3N/4 + k! Izl~k+m/%xp X+ 
i 

k! Izl <k+ 

• 1 +  2 IZI -]ft]/4 E IZI M/2eM-t-  I z IN /2 -k /4  

For Izl sufficiently small, the bracket is bounded from above by e Ix'I, which 
completes  the induc t ion  step. Since + ( O ; Y I , . . . ,  Yk) -~0 and 
+(X l . . . . .  X~; O) ---- 1, Lemma 2 is proved. �9 

[.emma 3. For all z ~ U (see Lemma 2) 

E fi  [p(Y~)l < [Xllm[z[ 3M/4 
(YI . . . . .  Ym) s = l  

Fs f~ FXL~O,  s =  1 , . . . ,  m 

~lrsl = M 

Remark .  Since A (X~, Y~') @ 0 only if Fx, N I" y; :/: O, this estimate can 
indeed be used in Lemma 2. 

Proo[. In summing over all cluster heights it is possible to drop the 
admissibility conditions. Convergence is assured by the condition (1) on the 
Hamiltonian. 

E Lo(Y,)[ 
(YI . . . . .  ym) s = l  

F s N F X ~ O  

EILI=M 

(17 t . . . . .  F,,,) (h I . . . . .  ht  s =  1 

F.~ cq Fx~:r . . . . .  
EIGI = M hL . . . . .  hJrn "1) 

TA 

lrI 1-I X lzl g'h' 
(I" 1 . . . . .  Fro) s = l  j = l  h : # 0  

F~ N FX~:r 

Y.IGI= M 

2 IZ[ c'M 
(r~ . . . . .  F,~) 
F s N F x ~ O  
Z[GI=M 
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c I can be chosen arbitrarily close to 1 by choosing U sufficiently small. 
The number of terms in this sum is bounded by [rx~lme6M. 3 The final two 
factors may be incorporated by slightly decreasing c v For appropriate U 
the resulting c I will be greater than 3 /4 .  This completes the proof of the 
claim. [] 

Note. If X l = ~r then [Xll = fl~r[[ is to be used, the reason being that 
A (Tr, Ys) v e 0 iff Int Y, N 7r 4: 0.  4 

B. Proof of the Main Results 

Lemmas 2 and 3 are used to prove convergence of the expansion (8) 
for p(z) and to show ts(A)l .<< constlOA I as claimed in the proof of Lemma 
1. 

kemma 4. For all z E U (see Lemma 2) 

k 

~ II A(I) I-I P(Ys) <~ k !  [ z ]  < k + N ) / 4  (14) 
( Y b  . . . ,  Y~:) F E Go( Y1 . . . . .  Yk) I ~ F s = 1 

E I Y ~ J = N  

p~U~Y~ 

Proof. Assume p @ Y1 and compensate by multiplying by k. Then 
the left-hand side of (14) is bounded by 

N - 1  

k ~ ~ ~ I(I)(Y,; Y2 . . . . .  Y~)IIp(YI)[ 
n~l  ( Y i I p ~ Y i )  (Y2 . . . . .  Yk) 

]Y,l=n Z~JY, t = N - n  

N - I  

< k 2 2 ( k -  
n = l  ( Y l l p + g l )  

Ir~t=n 
N--1 

n ~ l  

< k! izl <~+N>/4 

s 2 m bounds the number of possibilities to split the total length M into m partial lengths 
Mj . . . . .  M,,. For a l" i with length M i there are IFx~I starting points. Since each Fi can be 
traced without passing a given bond more than twice, there are at most 4 2M' choices of F, 
with given starting point. 

a Thus Ys must encircle one point of ~r (tl~-ll possibilities). The number of possibilities for a 
path of length M s to encircle a fixed point P is bounded by ~ Mf l  2M', the first factor being 
the number of possible starting points of F s along a path from P to infinity, the second 
arising as explained in footnote 3. 
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The second line follows by Lemma 2, the third by a combinatorial estimate 
analogous to the one in Lemma 3 and the final line by choosing U 
sufficiently small. �9 

Corollary 3. The cluster-graph expansion (8) for p(z) converges 
uniformly in A for all z E U and is analytic in U. 

Proof, Uniform convergence follows immediately from Lemma 4. 
Since convergence is uniform in both A and in a height cutoff h 0 (Ihbl < ho, 
for all b), since with these cutoffs the series is finite and hence trivially 
analytic and since p(z) is uniformly bounded in z for z E U, Vitali's 
theorem ensures analyticity of p(z) in U. �9 

Another immediate consequence of Lemma 4 is the following. 

Corollary 4. For all z ~ U 

IS(A)[ < constlOAI �9 

Since logZ A = [IAllp - S(A), Corollaries 3 and 4 also yield the first 
part of Theorem 1. 

Lemma 2 is also the crucial input for the proof of the first half of 
Theorem 2. 

Theorem 3. For all z E U and for any function f i  satisfying (3), the 
cluster-graph expansion (10) for (f,~) converges uniformly in A and is 
analytic in U. 

Proof. Lemma 2 bounds the inner sum in (10). The sum over 
compatible X cluster configurations is estimated as in Lemma 3, the only 
additional complication being the presence of the f~ factor. If N is the total 
length of the Y clusters, then by Lemma 2 

l:I [(,/~ )[ < elt=ll E ~ E o(X~)fi((X, . . . . .  X,}) 
r ~ 0  (X l . . . . .  Xr) s = l  

compat ible  

Int  X,A ~rv~O 

• exp 
k = O  N = k  

U is chosen such that in addition to the previous requirements the square 
bracket is bounded by a constant c 2 for all z @ U. If h i = maxbev, n,ihb[, 
then by assumption (3) 

f~({X, . . . . .  X~ }) < f l  h/~H~'n'"tr'll 
i = 1  
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The sum over heights in one cluster Xi is bounded in the following steps: 
First it is assumed that the maximal height jump occurs for a particular 
bond b. To compensate it is necessary to multiply bylF i O ~] < 4]1~1] 2, then 
sum over h b, (b' ~ b) as in Lemma 3 and over h b using 

tlbr 0 1 

< M(a, ll~l[, [zl)lzl el2 

by (1) and defining M(a, llTrll, lzl)-~2maxh(lhl"ll~lllz[ g(h)/2) which is fi- 
nite by (1). Since U is compact, it is possible to take M to be lzl 
independent. Thus 

I(f~)A[ < ell~ll 2 1 r=O ~.T 2 liar f~M( a '  I]r zlcm/2 
m = 4 r  (F 1 . . . . .  F~) 

compatible 
Int F~n ~r=~O 

As in the combinatorics of Lemma 3, the number of terms in the 
contour sum is bounded by It~rt((const) m. Hence ( f ,>a  converges uni- 
formly in A with an absolute bound uniform in z for z E U. As in the proof 
of Corollary 3, Vitali's theorem implies analyticity of (f~> for z ~ U. �9 

Exponential decay of truncated expectation values, the second part of 
Theorem 2, can be proved using the method of duplicate variables. The 
duplicate variables will be denoted by a prime, the expectation value in the 
product measure by ( >-. For a function f,,x,~' depending on both sets of 
variables with support ~r in the unprimed and ~r' in the primed variables, 
the cluster graph expansion (11) takes on the form 

1 2 2 f({x,x,})iio(x~)iio(x2,)• ~, F. ( f (~ r , r  ~ = (x} (x'} 
s S" k compatible 

• E E 
(Y I  . . . . .  Y,t,) F G - G c ( X o . . .  X .  YI . 

• 2 2 1-I A(t) (Y~...rT.)r'~G(x6...x;,Y~. r~,)ter' 

Truncated expectation values in the original model can 
untruncated expectation values in the duplicate measure 

using the notation of Theorem 2. Now consider a term t 

k 
1 H A(t)l-Io( )Y  k'! 

�9 Yk)  l @ r  1 i" 

k" 

1-I p(Y} ) (16) 
1 

be expressed as 

B'2)> ~ (17)  

in the expansion 
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(16) for the r ight-hand side of (17) with total cluster length < 2d. There will 
be a line l in ~2\~r separating ~r I f rom 7r 2 without  intersecting t. The cluster 
configurat ion 7obta ined  by interchanging original and duplicate clusters to 
the right of l has equal measure, but  B~2 - B'~2 has opposite sign, so in (17) t 
and t cancel. Thus ((A~[ - A ' ) ( B ~ ,  2 - B~2)>~contains only cluster configu- 
rations with total length >/2d.  Thus  one can pull out  a factor  e -~2a f rom 
each term without  affecting convergence of the remainder.  This yields 

Coro l l a ry  5. In  the notat ion of  Theorem 2 

I(A~B~2> - (A~,>(B,2>I < cte  - c d  

for sufficiently small temperatures. 

This completes the proof  of all the results stated in the Introduct ion.  

ACKNOWLEDGMENTS 

It  is a pleasure to acknowledge Professor A. Jaffe for encouraging this 
work and Professor J. Bricmont  and Dr. J. Imbrie for suggesting several 
improvements  in the manuscript .  

REFERENCES 

1. T. Balaban and K. Gawedzki, A Low Temperature Expansion for the Pseudoscalar 
Yukawa Model of Quantum Fields in Two Space-Time Dimensions. Harvard University 
preprint HUTMP 80/B87 (1980). 

2. J. Bricmont, J. L. Lebowitz, and C. E. Pfister, Commun. Math. Phys. 69:267 (1979). 
3. S. T. Chui and J. D. Weeks, Phys. Rev. B 14:4978 (1976). 
4. R. L. Dobrushin, Theory Prob. Appl. 17:582 (1972); ibid. 18:253 (1973). 
5. G. Gallavotti and S. Miracle-Sole, Commun. Math. Phys. 7:274 (1968). 
6. G. Gallavotti, A. Martin-Lof, and S. Miracle-Sole, in Statistical Mechanics and Mathemati- 

cal Problems, Battelle Seattle 1971 Rencontres, A. Lenard, ed, (Springer, New York, 1973), 
p. 162 ff. 

7. J. Glimm, A. Jaffe, and T. Spencer, in Constructive Quantum FieM Theory, 1973 "Ettore 
Majorana" International School of Mathematical Physics, G. Velo and A. Wightman, eds. 
(Springer, New York, 1973), p. 132 ff. 

8. J. Imbrie, Cluster Expansions and Mass Spectra for P(q02 Models Possessing Many Phases, 
Harvard University thesis (1980); Commun. Math. Phys. 82:261(1981); ibid 82:305(198!). 

9. J. D. Weeks, in Proceedings of the NATO Advanced Study Institute, Geilo, Norway, 1979 
Plenum Press, New York, 1980/p. 293 ff. 


